If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900=15x^2
We move all terms to the left:
900-(15x^2)=0
a = -15; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-15)·900
Δ = 54000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54000}=\sqrt{3600*15}=\sqrt{3600}*\sqrt{15}=60\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{15}}{2*-15}=\frac{0-60\sqrt{15}}{-30} =-\frac{60\sqrt{15}}{-30} =-\frac{2\sqrt{15}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{15}}{2*-15}=\frac{0+60\sqrt{15}}{-30} =\frac{60\sqrt{15}}{-30} =\frac{2\sqrt{15}}{-1} $
| -8p=20(4/5p+3-3/4p | | 10x-38=62+5x | | 1/x^2+((x+3)/(2x))=1/2 | | 80-x=4 | | 4^4x-5=36 | | 1y+6=12 | | 2b^2+24b+144=0 | | 0.6(x-6)=4.2 | | X-3/x=99.5 | | 10=4.9+f | | 2.1b=-18.9 | | k/5=3.7 | | 32=-4^x | | 21=-4.2h | | -9.3+x/7=-20.7 | | 45+x+8x+21=180 | | 72=3x^2+2 | | 1x=2x-9 | | 150=49=18x+7 | | 2x+2=135=25 | | 3x+39=39 | | 80=13x+2 | | 120=x+67 | | 5^x=189 | | 9=3n+7 | | 4y+8=9+3y | | 19=16m-2 | | 8x^2-x-69=0 | | 180=5x(x-5) | | 21=2x=8x+5 | | (Y+8)(y-4)=0 | | 0.4x-1.4=3.4x+2.4 |